Matematika merupakan ilmu yang sangat luas juga menyenangkan, sebelumnya telah kita bahas mengenai frekuensi harapan dan peluang komplemen suatu kejadian yang merupakan sub bahasan dari topik peluang. Dan kali ini topik yang akan kita pelajari mengenai turunan? anda pasti telah mengenal apa itu turunan bukan?
Turunan adalah pengukuran terhadap bagaimana fungsi berubah seiring perubahan nilai input, atau secara umum turunan menunjukkan bagaimana suatu besaran berubah akibat perubahan besaran lainnya. Proses dalam menemukan turunan disebut diferensiasi.
- adalah simbol untuk turunan pertama.
- adalah simbol untuk turunan kedua.
- adalah simbol untuk turunan ketiga.
adversitemens
TURUNAN PERTAMA
Misalnya y merupakan fungsi dari x atau dapat ditulis juga y=f(x). Turunan dari y terhadap x dinotasikan sebagai berikut:
Dengan menngunakan definisi turunan diatas dapat diturunkan beberapa rumus-rumus turunan, yaitu :
Perhatikan contoh berikut :
Perhatikan contoh berikut :
Perhatikan contoh berikut :
4. Untuk y=f(x).g(x) maka
atau dapat juga kita misalkan f(x)=u dan g(x)=v sehingga rumus turunan u.v=u’v+uv’
contoh :
6. Untuk turunan lain tersaji dalam penjelasan dibawah ini.
TURUNAN KEDUA
Turunan kedua dari y=f(x) terhadap x dinotasikan sebagai berikut
Turunan kedua merupakan turunan yang diperoleh dengan menurunkan kembali turunan pertama. Perhatikan contoh berikut :
Penggunakan untuk turunan kedua ini antara lain untuk :
a. Menentukan gradien garis singgung kurva
Jika diketahui garis g menyinggung kurva y=f(x) pada titik (a,f(a)) sehingga gradien untuk g adalah
Sebagai contoh tentukanlah gradien garis singgung dari kurva y=x²+3x dititik (1,-4) !
Penyelesaian :
Sehingga gradien garis singgung kurva y=x²+3x dititik (1,-4) adalah m=y(1)=2.1+3=5
b. Menentukan apakah interval tersebut naik atau turun
kurva y =f(x) naik jika f ‘ (x) >0 dan kurva y=f(x) turun jika f ‘ (x) <0. Lalu bagaimana cara menentukan f ‘ (x) > 0 atau f ‘ (x) <0 ? kita gunakan garis bilangan dari f ‘ (x). Perhatikan contoh berikut :
Tentukanlah interval naik dan interval turun dari fungsi y=x³+3x²-24x !
Jawab :
y=f(x)=x³+3x²-24x →f ‘ (x)=3x²+6x-24=3(x²+2x-8)=3(x+4)(x-2)
Berdasarkan garis bilangan yang diperoleh diatas :
f ‘ (x) >0 untuk x<-4 dan x>2 yang merupakan interval untuk fungsi naik.
F ‘ (x) <0 untuk -4 < x < 2 yang merupakan interval untuk fungsi turun.
c. Menentukan nilai maksimum dan nilai minimum
Nilai maksimum dan nilai minimum fungsi ini sering disebut juga dengan nilai ekstrim atau nilai stasioner fungsi, yang dapat diperoleh pada f ‘ (x)=0 untuk fungsi y=f(x). Untuk lebih jelasnya perhatikan contoh berikut.
Tentukan nilai ekstrim dari fungsi y=x³-3x²-24x-7 !
Jawab :
y’=3x²-6x-24
nilai ekstrim diperoleh dari y’=o maka
3x²-6x-24 = 0
(x²-2x-8)=0
(x-4)(x+2)=0
x1=4 ; x2=-2
Berdasarkan garis bilangan diatas :
Fungsi maksimum pada x=-2 sehingga nilai balik maksimumnya yaitu :
f(-2)=(-2)³-3(-2)²-24(-2)-7
f(-2)=21
Fungsi minimum pada x=4 sehingga nilai balik minimumnya yaitu :
f(4)=(4)³-3(4)²-24(4)-7
f(4)=-87
TURUNAN FUNGSI TRIGONOMETRI
Berikut ini rumus untuk turunan fungsi trigonometri :
Perhatikan contoh berikut :
Jawab :
Tidak ada komentar:
Posting Komentar