Jumat, 14 Desember 2018

Basis dan Dimensi

Basis dan Dimensi

Basis : suatu ukuran tertentu yang menyatakan  komponen dari sebuah vector. Dimensi biasanya dihubungkan dengan ruang, misalnya garis adalah ruang dengan dimensi 1, bidang adalah uang dengan dimensi 2 dan seterusnya. Definisi basis secara umum adalah sebagai berikut :
Jika V adalah ruang vektor dan S = {v1, v2, v3, ….., vn} adalah kumpulan vektor di dalam V, maka S disebut sebagai basis dari ruang vektor V jika 2 syarat berikut ini dipenuhi :
        i.            S bebas linier;
      ii.            S serentang V.
Contoh 1
Misalkan e1 = ( 1, 0, 0, … , 0 ), e2 = ( 0, 1, 0, … , 0 ), … , en = ( 0, 0, 0, … , 1 ). Dalam contoh pada pembahasan kebebasan linier, kita telah menunjukkan bahwa S = { e1, e2, … , en } adalah himpunan bebas linier dengan Rn. Karena setiap vector v = (v1, v2, … , vn) pada Rn dapat dituliskan sebagai v = v1e1 +  v2e2 + … + vnen, maka S merentang Rn sehingga S  adalah sebuah basis. Basis tersebut dinamakan basis baku untuk Rn.
Contoh 2
Misalkan v1 = ( 1, 2, 1 ), v2 = ( 2, 9, 0 ), dan v3 = ( 3, 3, 4). Perlihatkan bahwa himpunan S = { v1, v2, v3 } adalah basis untuk R3.
Pemecahan. Untuk memperlihatkan bahwa S serentang R3, maka kita harus perlihatkan bahwa sembarang vector b = ( b1, b2, b3 ) dapat dinyatakan sebagai kombinasi linier
b = k1v1 + k2v2 + k3v3
dari vector – vector pada S. dengan menyatakan persamaan ini dalam komponen-komponennya maka akan memberikan
( b1, b2, b3 ) = k1 ( 1, 2, 1 ) + k2 ( 2, 9, 0 ) + k3 ( 3, 3, 4 )
atau
( b1, b2, b3 ) = ( k1 + 2k2 + 3k3, 2k1 + 9k2 + 3k3, k1 + 4k3 )
atau
k1 + 2k2 + 3k3               = b1
2k1 + 9k2 + 3k3             = b2
k1            + 4k3             = b3                                               (1.1)
Jadi, untuk memperlihatkan bahwa S merentang V, maka kita harus perlihatkan bahwa system (1.1) mempunyai pemecahan semua pilihan b = (b1, b2, b3 ). Untuk membuktikan bahwa S bebas linier, kita harus perlihatkan bahwa satu – satunya pemecahan dari
k1v1 + k2v2 + k3v3 = 0                                                   (1.2)
adalah k1 = k2 = k3 = 0
seperti sebelumnya, jika (1.2) dinyatakan dalam komponen – komponennya, maka pembuktian bebas linier akan direduksi menjadi pembuktian bahwa system tersebut  homogen
k1 + 2k2 + 3k3               = 0
2k1 + 9k2 + 3k3             = 0
k1            + 4k3             = 0                                           (1.3)
hanya mempunyai pemecahan trivial. Perhatikan bahwa system (1.1) dan system (1.3) mempunyai matriks koefisien yang sama. Jadi, menurut bagian – bagian (a), (b), (d) dari Teorema 15 pada bagian  Hasil Selanjutnya Mengenai Sistem Persamaan dan Keterbalikan, kita dapat secara serentak membuktikan bahwa S bebas linier dan merentang R3 dengan memperlihatakan bahwa matriks koefisien

Pada system (1.1) dan system (1.3) dapat dibalik. Karena

maka jelaslah dari Teorema 7 pada bagian Sifat-Sifat Fungsi Determinan bahwa A dapat dibalik. Jadi, S adalah sebuah basis untuk R3.
Contoh 3
Himpunan S = { 1, x, x2, … , xn } merupakan basis untuk ruang vector Pn yang diperkenalkan dalam contoh 13 pada bagian Subruang. Dari contoh 18, vector – vector pada S merentang Pn. Untuk melihat bahwa S bebas linier, anggaplah bahwa suatu kombinasi linier dari vector – vector S adalah vector nol, yakni
c0 + c1x + … + cnxn = 0 (untuk semua x)                                              (1.4)
Kita harus perlihatkan bahwa c0 = c1 = … = cn = 0. Dari aljabar kita ketahui bahwa polinom taknol berderajat n mempunyai paling banyak n akar yang berbeda. Karena (1.4) memenuhi untuk semua x, maka setiap nilai x adalah sebuah akar dari ruas kiri, hal ini berarti bahwa c1 = c2 = … = cn = 0; kalau tidak, maka c0 + c1x + … cnxn dapat mempunyai paling banyak n akar. Maka himpunan S adalah himpunan bebas linier.
Basis S dalam contoh ini dinamakan basis baku untuk Pn.
Contoh 3
Andaikan ruang V= {u, v, w, s}, di mana:
. Cari basis dan dimensi dari ruang V!
Solusi : (Menggunakan matriks)

Basis dari V={(-1, 1 , 1), (0, -1, 3)}
Dimensi V = 2

Tidak ada komentar:

Posting Komentar