Senin, 24 September 2018

Determinan merupakan suatu fungsi dari himpunan semua matriks persegi ke himpunan semua bilangan real. Determinan matriks A biasanya dinyatakan oleh |A| atau det(A). Terdapat beberapa metode yang digunakan untuk menentukan determinan matriks yaitu metode SarrusEkspansi Kofaktor, dan Kondensasi (Penyusutan) CHIO. Kondensasi CHIO merupakan salah satu metode yang dapat digunakan dalam menentukan determinan matriks yang memiliki ordo n \times n dengan n \geq 3.
Kondensasi CHIO menyusutkan determinan matriks ordo n \times n menjadi ordo (n-1) \times (n-1) dan dikalikan dengan elemen a_{11}. Proses kondensasi ini berakhir pada determinan matriks ordo 2 \times 2
Tanpa mengurangi perumuman, dalam tulisan ini menggunakan matriks persegi dengan syarat elemen a_{11} \neq 0. Apabila nilai elemen a_{11} = 0 maka dilakukan proses operasi baris/kolom yaitu menukarkan baris/kolom pada determinan matriks untuk memperoleh a_{11} \neq 0.
Perhatikan untuk matrik dengan ordo 3 \times 3. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.
det(A) = \dfrac{1}{(a_{11})^{3-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix}\\ &\\ \begin{vmatrix} a_{11}  & a_{12}\\ a_{31} & a_{32} \end{vmatrix} & \begin{vmatrix} a_{11}  & a_{13}\\ a_{31} & a_{33} \end{vmatrix} \end{vmatrix}
Selanjutnya untuk matrik dengan ordo 4 \times 4. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.
det(A) = \dfrac{1}{(a_{11})^{4-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \begin{vmatrix}  a_{11} & a_{14}\\ a_{21} & a_{24} \end{vmatrix}\\ &&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{14}\\ a_{31} & a_{34}  \end{vmatrix}\\ &&\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{41} &  a_{42} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{41} &  a_{43} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{14}\\  a_{41} & a_{44} \end{vmatrix}\\ \end{vmatrix}
Apabila ukuran matriksnya diperluas atau diperumum menjadi n \times n, maka diperoleh persamaan untuk metode CHIO adalah sebagai berikut.
det(A) = \dfrac{1}{(a_{11})^{n-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \ldots & \begin{vmatrix}  a_{11} & a_{1n}\\ a_{21} & a_{2n} \end{vmatrix}\\ &&&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{31} & a_{3n}  \end{vmatrix}\\ &&&\\ \vdots & \vdots & \ddots &  \vdots\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{n1} & a_{n2}  \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{n1} & a_{n3}  \end{vmatrix} & \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{n1}  & a_{nn} \end{vmatrix}\\ \end{vmatrix}
Contoh 1.
Hitung determinan matriks A = \begin{bmatrix} -2&1&4\\ 3&-5&2\\ 5&2&1 \end{bmatrix}.
Dengan menggunakan metode CHIO, maka didapat
det(A) = \dfrac{1}{(-2)^{3-2}} \begin{vmatrix} \begin{vmatrix} -2&1\\ 3&-5  \end{vmatrix} & \begin{vmatrix} -2&4\\ 3&2 \end{vmatrix}\\ &\\  \begin{vmatrix} -2&1\\ 5&2 \end{vmatrix} & \begin{vmatrix} -2&4\\  5&1 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{-2} \begin{vmatrix} (-5)(-2)-(3)(1) & (-2)(2)-(3)(4)\\ (-2)(2)-(1)(5) & (-2)(1)-(4)(5) \end{vmatrix}
= \dfrac{1}{-2} \begin{vmatrix} 7&-16\\ -9&-22 \end{vmatrix}
= \dfrac{1}{-2} (7 \cdot -22-(-16) \cdot -9)
= \dfrac{1}{-2} (-154-144)
= \dfrac{1}{-2} (-298)
= -149
Contoh 2.
Hitung determinan matriks B = \begin{bmatrix} 2&1&6&7\\ 3&2&4&5\\ 4&4&2&3\\ 5&6&1&4 \end{bmatrix}.
Dengan menggunakan metode CHIO, maka didapat
det(B) = \dfrac{1}{(2)^{4-2}} \begin{vmatrix} \begin{vmatrix} 2&1\\ 3&2  \end{vmatrix} & \begin{vmatrix} 2&6\\ 3&4 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 3&5 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  4&4 \end{vmatrix} & \begin{vmatrix} 2&6\\ 4&2 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 4&3 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  5&6 \end{vmatrix} & \begin{vmatrix} 2&6\\ 5&1 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 5&4 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{2^2} \begin{vmatrix} (2)(2)-(3)(1) & (2)(4)-(3)(6) & (2)(5)-(3)(7)\\ (2)(4)-(1)(4) & (2)(2)-(4)(6) & (2)(3)-(7)(4)\\ (2)(6)-(1)(5) & (2)(1)-(6)(5) & (2)(4)-(7)(5) \end{vmatrix}
= \dfrac{1}{4} \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27  \end{vmatrix}
Misal C = \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27 \end{vmatrix}, diperoleh
det(C) = \dfrac{1}{1^{3-2}} \begin{vmatrix} \begin{vmatrix} 1&-10\\ 4&-20  \end{vmatrix} & \begin{vmatrix} 1&-11\\ 4&-22 \end{vmatrix}\\  &\\ \begin{vmatrix} 1&-10\\ 7&-28 \end{vmatrix} &  \begin{vmatrix} 1&-11\\ 7&-27 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{1} \begin{vmatrix} (1)(-20)-(4)(-10) & (1)(-22)-(-11)(4)\\ (1)(-28)-(-10)(7)  & (1)(-27)-(-11)(7) \end{vmatrix}
= \begin{vmatrix} 20 & 22\\ 42 & 50 \end{vmatrix}
= (20 \cdot 50-22 \cdot 42
= 1000-924
= 76
Jadi,

det(B) = \dfrac{1}{4} det(C)

= \dfrac{1}{4} (76)
= 19
SIFAT SIFAT DETERMINAN MATRIKS
  1. Jika A adalah sebarang matriks kuadrat yang mengandung sebaris bilangan nol, maka det(A) = 0.
    Contoh :
    misal matriks A = \left [ \begin{array}{rrr} 1& 2& 3\\ 1& 0& 1\\ 0& 0& 0 \end{array} \right ]
    dengan menggunakan Aturan Kofaktor, maka
    det(A) = \left | \begin{array}{rrr} 1& 2& 3\\ 1& 0& 1\\ 0& 0& 0 \end{array} \right |
    = a31M31 – a32M32 + a33M33
    = 0\left | \begin{array}{rr} 2& 3\\ 0& 1 \end{array} \right | – 0\left | \begin{array}{rr} 1& 3\\ 1& 1 \end{array} \right | + 0\left | \begin{array}{rr} 1& 2\\ 1& 0 \end{array} \right |
    = 0(2.1 – 3.0) – 0(1.1 – 1.3) + 0(1.0 – 1.2)
    = 0
  2. Jika A adalah matriks segitiga n x n, maka det(A) adalah hasil kali entri-entri pada diagonal utama, yakni det(A) = a11a22 … ann
    Contoh :
    det(A) = \left | \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right |
    = a31M31 – a32M32 + a33M33
    = 0\left | \begin{array}{rr} 1& 3\\ 3& 1 \end{array} \right | – 0\left | \begin{array}{rr} 2& 3\\ 0& 1 \end{array} \right | + 3\left | \begin{array}{rr} 2& 1\\ 0& 3 \end{array} \right |
    = 0(1.1 – 3.3) – 0(2.1 – 0.3) + 3(2.3 – 0.1)
    = 0 – 0 + 3.2.3
    = 18
    Hasil ini sama dengan perkalian entri pada diagonal utama yaitu 2 x 3 x 3 = 18
  3. Misalkan A’ adalah matriks yang dihasilkan bila baris tunggal A dikalikan oleh konstanta k, maka det(A’) = k det(A)
    Contoh :
    misal k = 2 dan A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] maka kA = \left [ \begin{array}{rrr} 4& 2& 6\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ]
    det(A) = \left | \begin{array}{rrr} 4& 2& 6\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right |
    berdasarkan Sifat 3 maka det(kA) = det(A’) = 4.3.3 = 36
    karena det(A) = 18 dan k = 2 maka k.det(A) = 2.18 = 36
    jadi, det(A’) = k.det(A)
  4. Misalkan A’ adalah matriks yang dihasilkan bila dua baris A dipertukarkan, maka det(A’) = -det(A)
    Contoh :
    misal A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] maka kA = \left [ \begin{array}{rrr} 4& 2& 6\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] dan baris 1 ditukar dengan baris 2 sehingga diperoleh matriks A’ = \left [ \begin{array}{rrr} 0& 3& 1\\ 2& 1& 3\\ 0& 0& 3 \end{array} \right ]
    det(A’) = \left [ \begin{array}{rrr} 0& 3& 1\\ 2& 1& 3\\ 0& 0& 3 \end{array} \right ]
    = a31M31 – a32M32 + a33M32
    = 0\left | \begin{array}{rr} 3& 1\\ 1& 3 \end{array} \right | – 0\left | \begin{array}{rr} 0& 1\\ 2& 3 \end{array} \right | + 3\left | \begin{array}{rr} 0& 3\\ 2& 1 \end{array} \right |
    = 0(3.3 – 1.1) – 0(0.3 – 2.1) + 3(0.1 – 2.3)
    = 0 – 0 + 3.(-2).3
    = -18
    Jadi, det(A’) = -det(A)
  5. Misalkan A’ adalah matriks yang dihasilkan bila kelipatan satu baris A ditambahkan pada baris lain, maka det(A’) = det(A)
    Contoh :
    misal A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] kemudian bilakukan Operasi Baris Elementer pada baris kedua yaitu B2 + 2B1 sehingga diperoleh A’ = \left [ \begin{array}{rrr} 2& 1& 3\\ 4& 5& 7\\ 0& 0& 3 \end{array} \right ]
    det(A’) = \left | \begin{array}{rrr} 2& 1& 3\\ 4& 5& 7\\ 0& 0& 3 \end{array} \right |
    = a31M31 – a32M32 + a33M33
    = 0\left | \begin{array}{rr} 1& 3\\ 5& 7 \end{array} \right | – 0\left | \begin{array}{rr} 2& 3\\ 4& 7 \end{array} \right | + 3\left | \begin{array}{rr} 2& 1\\ 4& 5 \end{array} \right |
    = 0(1.7 – 5.3) – 0(2.7 – 3.4) + 3(2.5 – 4.1)
    = 0 – 0 + 3.(6)
    = 18
    Jadi, det(A’) = det(A)
  6. Jika A adalah sebarang matriks kuadrat, maka det(A) = det(At)
    Contoh :
    misal A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] maka At = \left [ \begin{array}{rrr} 2& 0& 0\\ 1& 3& 0\\ 3& 1& 3 \end{array} \right ]
    det(At) = a13M13 – a23M23 + a33M33
    = 0\left | \begin{array}{rr} 1& 3\\ 3& 1 \end{array} \right | – 0\left | \begin{array}{rr} 2& 0\\ 3& 1 \end{array} \right | + 3\left | \begin{array}{rr} 2& 0\\ 1& 3 \end{array} \right |
    = 0(1.1 – 3.3) – 0(2.1 – 3.0) + 3(2.3 – 1.0)
    = 0 – 0 + 3.2.3
    = 18
    Jadi, det(A) = det(At)
  7. Misalkan A, A’ dan A” adalah matriks n x n yang hanya berbeda dalam baris tunggal, katakanlah baris ke-r, dan anggap bahwa baris ke r dari A” dapat diperoleh dengan menambahkan entri-entri yang bersesuaian dalam baris ke-r dari A dan dalam baris ke-r dari A’, maka det(A”) = det(A) + det(A’) [hasil yang serupa juga berlaku untuk kolom]
    Contoh :
    misal
    A = \left [ \begin{array}{rr} 1& 2\\ 4& 3 \end{array} \right ] maka det(A) = (1.3 – 4.2) = -5
    A’ = \left [ \begin{array}{rr} 4& 3\\ 1& 2 \end{array} \right ] maka det(A) = (4.2 – 1.3) = 5
    dan A” = A + A’ = \left [ \begin{array}{rr} 1& 2\\ 4& 3 \end{array} \right ] + \left [ \begin{array}{rr} 4& 3\\ 1& 2 \end{array} \right ] = \left [ \begin{array}{rr} 5& 5\\ 5& 5 \end{array} \right ] maka det(A”) = (5.5 – 5.5) = 0
    jadi det(A”) = det(A) + det(A’) = -5 + 5 = 0
  8. Jika A dan B adalah matriks kuadrat yang ukurannya sama, maka det(AB) = det(A) det(B)
    Contoh :
    Dari contoh pada Sifat 7 dengan det(A) = -5 dan det(A’) = det(B) = 5 maka det(AB) = (-5)(5) = -25
    AB = \left [ \begin{array}{rr} 1& 2\\ 4& 3 \end{array} \right ] \left [ \begin{array}{rr} 4& 3\\ 1& 2 \end{array} \right ]
    \left [ \begin{array}{rr} 1.4+2.1& 1.3+2.2\\ 4.4+3.1& 4.3+3.2 \end{array} \right ]
    \left [ \begin{array}{rr} 6& 7\\ 19& 18 \end{array} \right ]
    det(AB) = 6.18 – 19.7
    = 108 – 133
    = -25
    Jadi det(A.B) = det(A).det(B) = (-5)(5) = -25
  9. Sebuah matriks kuadrat dapat dibalik jika dan hanya jika det(A) \neq 0
    Contoh :
    misal A = \left [ \begin{array}{rr} 1& 2\\ 4& 3 \end{array} \right ] dengan det(A) = -5
    A-1 = \frac{1}{detA}  \left [ \begin{array}{rr} d& -b\\ -c& a \end{array} \right ]
    \frac{1}{-5}  \left [ \begin{array}{rr} 3& -2\\ -4& 1 \end{array} \right ]
    \left [ \begin{array}{rr} -3/5& 2/5\\ 4/5& -1/5 \end{array} \right ]
    Karena det(A) \neq 0. Jadi matriks A memilki invers yaitu A-1 = \left [ \begin{array}{rr} -3/5& 2/5\\ 4/5& -1/5 \end{array} \right ]
  10. Jika A dapat dibalik, maka det(A-1) = \frac{1}{det(A)}
    Contoh :
    A-1 = \left [ \begin{array}{rr} -3/5& 2/5\\ 4/5& -1/5 \end{array} \right ] maka
    det(A-1) = (-3/5)(-1/5) – (4/5)(2/5)
    = 3/25 – 8/25
    = -5/25
    = -1/5
    karena det(A) = -5 maka berlaku det(A-1) = 1/det(A) = -1/5